
DSP System Toolbox™

Getting Started Guide

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

DSP System Toolbox™ Getting Started Guide

© COPYRIGHT 2012–2013 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 First printing Revised for Version 8.0 (R2011a)
September 2011 Online only Revised for Version 8.1 (R2011b)
March 2012 Online only Revised for Version 8.2 (R2012a)
September 2012 Online only Revised for Version 8.3 (R2012b)
March 2013 Online only Revised for Version 8.4 (R2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction

1
Product Description . 1-2
Key Features . 1-2

Configure Simulink Environment for Signal Processing
Models . 1-3
Installation . 1-3
Required Products . 1-4
Related Products . 1-4
Configure the Simulink Environment for Signal Processing
Models . 1-4

Design a Filter with fdesign and filterbuilder

2
Filter Design Process Overview . 2-2

Design a Filter Using fdesign . 2-4

Design a Filter Using filterbuilder 2-10

Design Filters in Simulink

3
Design and Implement a Filter . 3-2
Design a Digital Filter in Simulink 3-2
Add a Digital Filter to Your Model 3-7

iii

Adaptive Filters . 3-11
Design an Adaptive Filter in Simulink 3-11
Add an Adaptive Filter to Your Model 3-16
View the Coefficients of Your Adaptive Filter 3-21

System Objects

4
What Is a System Toolbox? . 4-2

What Are System Objects? . 4-3

When to Use System Objects Instead of MATLAB
Functions . 4-5
System Objects vs. MATLAB Functions 4-5
Process Audio Data Using Only MATLAB Functions
Code . 4-5

Process Audio Data Using System Objects 4-6

System Design and Simulation in MATLAB 4-8

System Objects in MATLAB Code Generation 4-9
System Objects in Generated Code 4-9
System Objects in codegen . 4-14
System Objects in the MATLAB Function Block 4-15
System Objects and MATLAB Compiler Software 4-15

System Objects in Simulink . 4-16

System Object Methods . 4-17
What Are System Object Methods? 4-17
The Step Method . 4-17
Common Methods . 4-18

System Design Using System Objects 4-20
Create Components for Your System 4-20
Configure Components for Your System 4-21

iv Contents

Assemble Components to Create Your System 4-22
Run Your System . 4-24
Reconfigure Your System During Runtime 4-24

Index

v

vi Contents

1

Introduction

• “Product Description” on page 1-2

• “Configure Simulink Environment for Signal Processing Models” on page
1-3

1 Introduction

Product Description
Design and simulate signal processing systems

DSP System Toolbox™ provides algorithms and tools for the design and
simulation of signal processing systems. These capabilities are provided
as MATLAB® functions, MATLAB System objects, and Simulink® blocks.
The system toolbox includes design methods for specialized FIR and IIR
filters, FFTs, multirate processing, and DSP techniques for processing
streaming data and creating real-time prototypes. You can design adaptive
and multirate filters, implement filters using computationally efficient
architectures, and simulate floating-point digital filters. Tools for signal I/O
from files and devices, signal generation, spectral analysis, and interactive
visualization enable you to analyze system behavior and performance. For
rapid prototyping and embedded system design, the system toolbox supports
fixed-point arithmetic and C or HDL code generation.

Key Features

• Algorithms available as MATLAB System objects and Simulink blocks

• Simulation of streaming, frame-based, and multirate systems

• Signal generators and I/O support for multimedia files and devices,
including ASIO™ drivers and multichannel audio

• Design methods for specialized filters, including parametric equalizers and
adaptive, multirate, octave, and acoustic weighting filters

• Filter realization architectures, including second-order sections and lattice
wave digital filters

• Signal measurements for peak-to-peak, peak-to-RMS, state-level
estimation, and bilevel waveform metrics

• FFT, spectral estimation, windowing, signal statistics, and linear algebra

• Algorithm support for floating-point, integer, and fixed-point data types

• Support for fixed-point modeling and C and HDL code generation

1-2

Configure Simulink Environment for Signal Processing Models

Configure Simulink Environment for Signal Processing
Models

In this section...

“Installation” on page 1-3

“Required Products” on page 1-4

“Related Products” on page 1-4

“Configure the Simulink Environment for Signal Processing Models” on
page 1-4

Installation
Before you begin working, you need to install the product on your computer.

Installing the DSP System Toolbox Software
The DSP System Toolbox software follows the same installation procedure
as the MATLAB toolboxes.

Installing Online Documentation
Installing the documentation is part of the installation process:

• Installation from a DVD — Start the MathWorks® installer. When
prompted, select the Product check boxes for the products you want to
install. The documentation is installed along with the products.

• Installation from a Web download — If you update the DSP System Toolbox
software using a Web download and you want to view the documentation
with the MATLAB Help browser, you must install the documentation on
your hard drive.

Download the files from the Web. Then, start the installer, and select
the Product check boxes for the products you want to install. The
documentation is installed along with the products.

1-3

1 Introduction

Required Products
The DSP System Toolbox product is part of a family of MathWorks
products. You need to install several products to use the toolbox. For more
information about the required products, see the MathWorks Web site, at
http://www.mathworks.com/products/dsp-system/requirements.html.

Related Products
MathWorks provides several products that are relevant to the kinds of tasks
you can perform with DSP System Toolbox software.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system

• The MathWorks Web site, at
http://www.mathworks.com/products/dsp-system/related.html.

Configure the Simulink Environment for Signal
Processing Models

• “Using dspstartup.m” on page 1-4

• “Settings in dspstartup.m” on page 1-6

Using dspstartup.m
The DSP System Toolbox product provides a file, dspstartup.m, that lets
you automatically configure the Simulink environment for signal processing
simulation. We recommend these configuration parameters for models that
contain DSP System Toolbox blocks. Because these blocks calculate values
directly rather than solving differential equations, you must configure the
Simulink solver to behave like a scheduler. The solver, while in scheduler
mode, uses a block sample time to determine when the code behind each block
executes. For example, if the sample time of a Sine Wave block is 0.05, the
solver executes the code behind this block and every other block with this
sample time once every 0.05 seconds.

1-4

http://www.mathworks.com/products/dsp-system/requirements.html
http://www.mathworks.com/products/dsp-system/related.html

Configure Simulink Environment for Signal Processing Models

Note When working with models that contain DSP System Toolbox blocks,
use source blocks that allow you to specify a sample time. When your source
block does not have a Sample time parameter, you must add a Zero-Order
Hold block in your model and use it to specify the sample time. For more
information, see “Continuous-Time Source Blocks”. The exception to this
rule is the Constant block, which can have a constant sample time. When it
does, Simulink executes this block and records the constant value once, which
allows for faster simulations and more compact generated code.

To use the dspstartup file to configure Simulink for signal processing
simulations, you can

• Type dspstartup at the MATLAB command line. All new models have
settings customized for signal processing applications. Existing models
are not affected.

• Place a call to dspstartup within the startup.m file. This is an efficient
way to use dspstartup if you want these settings to be in effect every time
you start Simulink. For more information about performing automated
tasks at startup, see the documentation for the startup command in the
MATLAB Function Reference.

The dspstartup file executes the following commands:

set_param(0, ...
'SingleTaskRateTransMsg','error', ...
'multiTaskRateTransMsg', 'error', ...
'Solver', 'fixedstepdiscrete', ...
'SolverMode', 'SingleTasking', ...
'StartTime', '0.0', ...
'StopTime', 'inf', ...
'FixedStep', 'auto', ...
'SaveTime', 'off', ...
'SaveOutput', 'off', ...
'AlgebraicLoopMsg', 'error', ...
'SignalLogging', 'off');

1-5

1 Introduction

You can edit the dspstartup file to change any of these settings or to add
your own custom settings. For complete information about these settings, see
“Model Parameters” in the Simulink documentation.

Settings in dspstartup.m
A number of the settings in the dspstartup file are chosen to improve the
performance of the simulation:

• 'Solver' is set to 'fixedstepdiscrete'.

This selects the fixed-step solver option instead of the Simulink default
variable-step solver. This mode enables code generation from the model
using the Simulink Coder™ product.

• 'Stop time' is set to 'Inf'.

The simulation runs until you manually stop it by selecting Stop from
the Simulation menu.

• 'SaveTime' is set to 'off'.

Simulink does not save the tout time-step vector to the workspace.
The time-step record is not usually needed for analyzing discrete-time
simulations, and disabling it saves a considerable amount of memory,
especially when the simulation runs for an extended time.

• 'SaveOutput' is set to 'off'.

Simulink Outport blocks in the top level of a model do not generate an
output (yout) in the workspace.

1-6

2

Design a Filter with fdesign
and filterbuilder

• “Filter Design Process Overview” on page 2-2

• “Design a Filter Using fdesign” on page 2-4

• “Design a Filter Using filterbuilder” on page 2-10

2 Design a Filter with fdesign and filterbuilder

Filter Design Process Overview

Note You must have the Signal Processing Toolbox™ installed to use
fdesign and filterbuilder. Advanced capabilities are available if your
installation additionally includes the DSP System Toolbox license. You can
verify the presence of both toolboxes by typing ver at the command prompt.

Filter design through user-defined specifications is the core of the fdesign
approach. This specification-centric approach places less emphasis on the
choice of specific filter algorithms, and more emphasis on performance during
the design a good working filter. For example, you can take a given set of
design parameters for the filter, such as a stopband frequency, a passband
frequency, and a stopband attenuation, and— using these parameters—
design a specification object for the filter. You can then implement the filter
using this specification object. Using this approach, it is also possible to
compare different algorithms as applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter

• Implementation Object — Describes the designed filter; includes the array
of coefficients and the filter structure

The distinction between these two objects is at the core of the filter design
methodology. The basic attributes of each of these objects are outlined in the
following table.

Specification Object Implementation Object

High-level specification Filter coefficients

Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select
the code, right-click the selection, and choose Evaluate Selection from the
context menu), or you can enter the code on the MATLAB command line.
Before you begin this example, start MATLAB and verify that you have
installed the Signal Processing Toolbox software. If you wish to access the

2-2

Filter Design Process Overview

full functionality of fdesign and filterbuilder, you should additionally
obtain the DSP System Toolbox software. You can verify the presence of these
products by typing ver at the command prompt.

2-3

2 Design a Filter with fdesign and filterbuilder

Design a Filter Using fdesign
Use the following two steps to design a simple filter.

1 Create a filter specification object.

2 Design your filter.

Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter
is defined as shown in the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass
filter has the following specifications, specified here using MATLAB code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB
F_stop1 = 8400; % Edge of the stopband = 8400 Hz
F_pass1 = 10800; % Edge of the passband = 10800 Hz
F_pass2 = 15600; % Closing edge of the passband = 15600 Hz
F_stop2 = 18000; % Edge of the second stopband = 18000 Hz
A_stop2 = 60; % Attenuation in the second stopband = 60 dB
A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the
fdesign.bandpass method as parameters.

2-4

Design a Filter Using fdesign

Step 1
To create a filter specification object, evaluate the following code at
the MATLAB prompt:

d = fdesign.bandpass

Now, pass the filter specifications that correspond to the default
Specification— fst1,fp1,fp2,fst2,ast1,ap,ast2. This example adds
fs as the final input argument to specify the sampling frequency of
48 kHz.

>> BandPassSpecObj = ...
fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...

F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...
A_stop2, 48000)

Note The order of the filter is not specified, allowing a degree of
freedom for the algorithm design in order to achieve the specification.
The design will be a minimum order design.

The specification parameters, such as Fstop1, are all given default
values when none are provided. You can change the values of the
specification parameters after the filter specification object has been
created. For example, if there are two values that need to be changed,
Fpass2 and Fstop2, use the set command, which takes the object first,
and then the parameter value pairs. Evaluate the following code at
the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains
all the required design parameters, including the filter type.

You may also change parameter values in filter specification objects by
accessing them as if they were elements in a struct array.

>> BandPassSpecObj.Fpass2=15800;

2-5

2 Design a Filter with fdesign and filterbuilder

Step 2
Design the filter by using the design command. You can access the
design methods available for you specification object by calling the
designmethods function. For example, in this case, you can execute
the command

>> designmethods(BandPassSpecObj)

Design Methods for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

After choosing a design method use, you can evaluate the following at the
MATLAB prompt (this example assumes you’ve chosen ’equiripple’):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x44 double]

PersistentMemory: false

If you have the DSP System Toolbox installed, you can also design your
filter with a filter System object™. To create a filter System object
with the same specification object BandPassSpecObj, you can execute
the commands

>> designmethods(BandPassSpecObj,...
'SystemObject',true)

2-6

Design a Filter Using fdesign

Design Methods that support System objects for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

>> BandPassFiltSysObj = design(BandPassSpecObj,...
'equiripple','SystemObject',true)

System: dsp.FIRFilter

Properties:
Structure: 'Direct form'

NumeratorSource: 'Property'
Numerator: [1x44 double]

InitialConditions: 0
FrameBasedProcessing: true

Show fixed-point properties

Available design methods and design options for filter System objects
are not necessarily the same as those for filter objects.

2-7

2 Design a Filter with fdesign and filterbuilder

Note If you do not specify a design method, a default method will be
used. For example, you can execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

FilterStructure: 'Direct-Form FIR'
Arithmetic: 'double'
Numerator: [1x44 double]

PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the
Filter Visualization tool. Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

If you have the DSP System Toolbox installed, the Filter Visualization
tool produces the following figure with the dashed red lines indicating
the transition bands and unity gain (0 in dB) over the passband.

2-8

Design a Filter Using fdesign

2-9

2 Design a Filter with fdesign and filterbuilder

Design a Filter Using filterbuilder
Filterbuilder presents the option of designing a filter using a GUI dialog box
as opposed to the command line instructions. You can use Filterbuilder to
design the same bandpass filter designed in the previous section, “Design
a Filter Using fdesign” on page 2-4

Design a Simple Filter in Filterbuilder

To design the filter using the Filterbuilder GUI:

1 Type the following at the MATLAB prompt:

filterbuilder

2 Select Bandpass filter response from the list in the dialog box, and hit the
OK button.

3 Enter the correct frequencies for Fpass2 and Fstop2, then click OK. Here
the specification uses normalized frequency, so that the passband and
stopband edges are expressed as a fraction of the Nyquist frequency (in this
case, 48/2 kHz). The following message appears at the MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, you see the object Hbp has been placed
on your workspace.

4 To check your work, plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

2-10

Design a Filter Using filterbuilder

Note that the dashed red lines on the preceding figure will only appear if
you are using the DSP System Toolbox software.

2-11

2 Design a Filter with fdesign and filterbuilder

2-12

3

Design Filters in Simulink

• “Design and Implement a Filter” on page 3-2

• “Adaptive Filters” on page 3-11

3 Design Filters in Simulink®

Design and Implement a Filter

In this section...

“Design a Digital Filter in Simulink” on page 3-2

“Add a Digital Filter to Your Model” on page 3-7

Design a Digital Filter in Simulink
You can design lowpass, highpass, bandpass, and bandstop filters using either
the Digital Filter Design block or the Filter Realization Wizard. These blocks
are capable of calculating filter coefficients for various filter structures. In
this section, you use the Digital Filter Design block to convert white noise to
low frequency noise so you can simulate its effect on your system.

As a practical application, suppose a pilot is speaking into a microphone
within the cockpit of an airplane. The noise of the wind passing over the
fuselage is also reaching the microphone. A sensor is measuring the noise of
the wind on the outside of the plane. You want to estimate the wind noise
inside the cockpit and subtract it from the input to the microphone so that
only the pilot’s voice is transmitted. In this chapter, you first learn how to
model the low frequency noise that is reaching the microphone. Later, you
learn how to remove this noise so that only the pilot’s voice is heard.

In this topic, you use a Digital Filter Design block to create low frequency
noise, which models the wind noise inside the cockpit:

1 Open the model by typing

ex_gstut3

at the MATLAB command prompt. This model contains a Scope block that
displays the original sine wave and the sine wave with white noise added.

3-2

Design and Implement a Filter

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB
command prompt.

3 Convert white noise to low frequency noise by introducing a Digital Filter
Design block into your model. In the airplane scenario, the air passing over
the fuselage creates white noise that is measured by a sensor. The Random
Source block models this noise. The fuselage of the airplane converts this
white noise to low frequency noise, a type of colored noise, which is heard
inside the cockpit. This noise contains only certain frequencies and is more
difficult to eliminate. In this example, you model the low frequency noise
using a Digital Filter Design block. This block uses the functionality of the
Filter Design and Analysis Tool (FDATool) to design a filter.

3-3

3 Design Filters in Simulink®

Double-click the Filtering library, and then double-click the Filter
Implementations sublibrary. Click-and-drag the Digital Filter Design block
into your model.

4 Set the Digital Filter Design block parameters to design a lowpass filter
and create low frequency noise. Open the block parameters dialog box by
double-clicking the block. Set the parameters as follows:

• Response Type = Lowpass

• Design Method = FIR and, from the list, choose Window

• Filter Order = Specify order and enter 31

• Scale Passband — Cleared

• Window = Hamming

3-4

Design and Implement a Filter

• Units = Normalized (0 to 1)

• wc = 0.5

Based on these parameters, the Digital Filter Design block designs a
lowpass FIR filter with 32 coefficients and a cutoff frequency of 0.5. The
block multiplies the time-domain response of your filter by a 32 sample
Hamming window.

5 Click Design Filter at the bottom center of the dialog box to view the
magnitude response of your filter in the Magnitude Response pane. The
Digital Filter Design dialog box should now look similar to the following
figure.

3-5

3 Design Filters in Simulink®

You have now designed a digital lowpass filter using the Digital Filter Design
block.

You can experiment with the Digital Filter Design block in order to design a
filter of your own. For more information on the block functionality, see the
Digital Filter Design block reference page. For more information on the Filter
Design and Analysis Tool, see “FDATool” in the Signal Processing Toolbox
documentation.

3-6

Design and Implement a Filter

Add a Digital Filter to Your Model
In this topic, you add the lowpass filter you designed in “Design a Digital
Filter in Simulink” on page 3-2 to your block diagram. Use this filter, which
converts white noise to colored noise, to simulate the low frequency wind
noise inside the cockpit:

1 If the model you created in “Design a Digital Filter in Simulink” on page 3-2
is not open on your desktop, you can open an equivalent model by typing

ex_gstut4

at the MATLAB command prompt.

3-7

3 Design Filters in Simulink®

2 Incorporate the Digital Filter Design block into your block diagram by
placing it between the Random Source block and the Sum block.

3-8

Design and Implement a Filter

3 Run your model and view the results in the Scope window. This window
shows the original input signal and the signal with low frequency noise
added to it.

3-9

3 Design Filters in Simulink®

You have now built a digital filter and used it to model the presence of colored
noise in your signal. This is analogous to modeling the low frequency noise
reaching the microphone in the cockpit of the aircraft. Now that you have
added noise to your system, you can experiment with methods to eliminate it.

3-10

Adaptive Filters

Adaptive Filters

In this section...

“Design an Adaptive Filter in Simulink” on page 3-11

“Add an Adaptive Filter to Your Model” on page 3-16

“View the Coefficients of Your Adaptive Filter” on page 3-21

Design an Adaptive Filter in Simulink
Adaptive filters track the dynamic nature of a system and allow you to
eliminate time-varying signals. The DSP System Toolbox libraries contain
blocks that implement least-mean-square (LMS), Block LMS, Fast Block
LMS, and recursive least squares (RLS) adaptive filter algorithms. These
filters minimize the difference between the output signal and the desired
signal by altering their filter coefficients. Over time, the adaptive filter’s
output signal more closely approximates the signal you want to reproduce.

In this topic, you design an LMS adaptive filter to remove the low frequency
noise in your signal:

1 If the model you created in “Add a Digital Filter to Your Model” on page 3-7
is not open on your desktop, you can open an equivalent model by typing

ex_gstut5

at the MATLAB command prompt.

3-11

3 Design Filters in Simulink®

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB
command prompt.

3 Remove the low frequency noise from your signal by adding an LMS
Filter block to your system. In the airplane scenario, this is equivalent
to subtracting the wind noise inside the cockpit from the input to the
microphone. Double-click the Filtering sublibrary, and then double-click
the Adaptive Filters library. Add the LMS Filter block into your model.

3-12

Adaptive Filters

4 Set the LMS Filter block parameters to model the output of the Digital
Filter Design block. Open its dialog box by double-clicking the block. Set
the block parameters as follows:

• Algorithm = Normalized LMS

3-13

3 Design Filters in Simulink®

• Filter length = 32

• Specify step size via = Dialog

• Step size (mu) = 0.1

• Leakage factor (0 to 1) = 1.0

• Initial value of filter weights = 0

• Clear the Adapt port check box.

• Reset port = None

• Select the Output filter weights check box.

The LMS Filter dialog box should now look like the following figure:

3-14

Adaptive Filters

3-15

3 Design Filters in Simulink®

5 Click Apply.

Based on these parameters, the LMS Filter block computes the filter weights
using the normalized LMS equations. The filter order you specified is the
same as the filter order of the Digital Filter Design block. The Step size (mu)
parameter defines the granularity of the filter update steps. Because you set
the Leakage factor (0 to 1) parameter to 1.0, the current filter coefficient
values depend on the filter’s initial conditions and all of the previous input
values. The initial value of the filter weights (coefficients) is zero. Since you
selected the Output filter weights check box, the Wts port appears on the
block. The block outputs the filter weights from this port.

Now that you have set the block parameters of the LMS Filter block, you can
incorporate this block into your block diagram.

Add an Adaptive Filter to Your Model
In this topic, you recover your original sinusoidal signal by incorporating the
adaptive filter you designed in “Design an Adaptive Filter in Simulink” on
page 3-11 into your system. In the aircraft scenario, the adaptive filter models
the low frequency noise heard inside the cockpit. As a result, you can remove
the noise so that the pilot’s voice is the only input to the microphone:

1 If the model you created in “Design an Adaptive Filter in Simulink” on
page 3-11 is not open on your desktop, you can open an equivalent model
by typing

ex_gstut6

at the MATLAB command prompt.

3-16

Adaptive Filters

2 Add a Sum block to your model to subtract the output of the adaptive filter
from the sinusoidal signal with low frequency noise. From the Simulink
Math Operations library, drag a Sum block into your model. Open the
Sum dialog box by double-clicking this block. Change the List of signs
parameter to |+- and then click OK.

3 Incorporate the LMS Filter block into your system.

a Connect the output of the Random Source block to the Input port of the
LMS Filter block. In the aircraft scenario, the random noise is the white
noise measured by the sensor on the outside of the airplane. The LMS
Filter block models the effect of the airplane’s fuselage on the noise.

b Connect the output of the Digital Filter Design block to the Desired port
on the LMS Filter block. This is the signal you want the LMS block to
reproduce.

3-17

3 Design Filters in Simulink®

c Connect the output of the LMS Filter block to the negative port of the
Sum block you added in step 2.

d Connect the output of the first Sum block to the positive port of the
second Sum block. Your model should now look similar to the following
figure.

The positive input to the second Sum block is the sum of the input signal
and the low frequency noise, s(n) + y. The negative input to the second Sum
block is the LMS Filter block’s best estimation of the low frequency noise,

3-18

Adaptive Filters

y’. When you subtract the two signals, you are left with an approximation
of the input signal.

s n s n y yapprox() () ’= + −

In this equation:

• s(n) is the input signal

• s n approx() is the approximation of the input signal

• y is the noise created by the Random Source block and the Digital Filter
Design block

• y’ is the LMS Filter block’s approximation of the noise

Because the LMS Filter block can only approximate the noise, there is still
a difference between the input signal and the approximation of the input
signal. In subsequent steps, you set up the Scope block so you can compare
the original sinusoidal signal with its approximation.

4 Add two additional inputs and axes to the Scope block. Open the Scope
dialog box by double-clicking the Scope block. Click the Parameters
button. For the Number of axes parameter, enter 4. Close the dialog
box by clicking OK.

5 Label the new Scope axes. In the Scope window, right-click on the third
axes and select Axes properties. The Scope properties: axis 3 dialog box
opens. In the Title box, enter Approximation of Input Signal. Close
the dialog box by clicking OK. Repeat this procedure for the fourth axes
and label it Error.

6 Connect the output of the second Sum block to the third port of the Scope
block.

7 Connect the output of the Error port on the LMS Filter block to the fourth
port of the Scope block. Your model should now look similar to the following
figure.

3-19

3 Design Filters in Simulink®

In this example, the output of the Error port is the difference between the
LMS filter’s desired signal and its output signal. Because the error is never
zero, the filter continues to modify the filter coefficients in order to better
approximate the low frequency noise. The better the approximation, the more
low frequency noise that can be removed from the sinusoidal signal. In the
next topic, “View the Coefficients of Your Adaptive Filter” on page 3-21, you
learn how to view the coefficients of your adaptive filter as they change with
time.

3-20

Adaptive Filters

View the Coefficients of Your Adaptive Filter
The coefficients of an adaptive filter change with time in accordance with a
chosen algorithm. Once the algorithm optimizes the filter’s performance,
these filter coefficients reach their steady-state values. You can view the
variation of your coefficients, while the simulation is running, to see them
settle to their steady-state values. Then, you can determine whether you can
implement these values in your actual system:

1 If the model you created in “Add an Adaptive Filter to Your Model” on
page 3-16 is not open on your desktop, you can open an equivalent model
by typing

ex_gstut7

at the MATLAB command prompt. Note that the Wts port of the adaptive
filter, which outputs the filter weights, still needs to be connected.

3-21

3 Design Filters in Simulink®

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB
command prompt.

3 View the filter coefficients using a Vector Scope block from the Sinks
library.

4 Open the Vector Scope dialog box by double-clicking the block. Set the
block parameters as follows:

a Click the Scope Properties tab.

• Input domain = Time

3-22

Adaptive Filters

• Time display span (number of frames) = 1

b Click the Display Properties tab.

• Select the following check boxes:

– Show grid

– Frame number

– Compact display

– Open scope at start of simulation

c Click the Axis Properties tab.

• Minimum Y-limit = -0.2

• Maximum Y-limit = 0.6

• Y-axis label = Filter Weights

d Click the Line Properties tab.

• Line visibilities = on

• Line style = :

• Line markers =.

• Line colors = [0 0 1]

e Click OK.

5 Connect the Wts port of the LMS Filter block to the Vector Scope block.

3-23

3 Design Filters in Simulink®

6 Set the configuration parameters:

a Open the Configuration Parameters dialog box by selecting Model
Configuration Parameters from the Simulation menu, and navigate
to the Solver pane.

b Enter inf for the Stop time parameter.

c Choose Fixed-step from the Type list.

d Choose Discrete (no continuous states) from the Solver list.

3-24

Adaptive Filters

We recommend these configuration parameters for models that contain
DSP System Toolbox blocks. Because these blocks calculate values directly
rather than solving differential equations, you must configure the Simulink
Solver to behave like a scheduler. The Solver, while in scheduler mode,
uses a block’s sample time to determine when the code behind each block
is executed. For example, the sample time of the Sine Wave and Random
Source blocks in this model is 0.05. The Solver executes the code behind
these blocks, and every other block with this sample time, once every 0.05
second.

Note When working with models that contain DSP System Toolbox
blocks, use source blocks that enable you to specify their sample time. If
your source block does not have a Sample time parameter, you must add a
Zero-Order Hold block in your model and use it to specify the sample time.
For more information, see “Continuous-Time Source Blocks” in the DSP
System Toolbox User’s Guide. The exception to this rule is the Constant
block, which can have a constant sample time. When it does, Simulink
executes this block and records the constant value once, which allows for
faster simulations and more compact generated code.

7 Close the dialog box by clicking OK.

8 Open the Scope window by double-clicking the Scope block.

9 Run your model and view the behavior of your filter coefficients in the
Vector Scope window, which opens automatically when your simulation
starts. Over time, you see the filter coefficients change and approach their
steady-state values, shown below.

3-25

3 Design Filters in Simulink®

You can simultaneously view the behavior of the system in the Scope
window. Over time, you see the error decrease and the approximation of
the input signal more closely match the original sinusoidal input signal.

3-26

Adaptive Filters

You have now created a model capable of adaptive noise cancellation. So far,
you have learned how to design a lowpass filter using the Digital Filter Design
block. You also learned how to create an adaptive filter using the LMS Filter
block. The DSP System Toolbox product has other blocks capable of designing
and implementing digital and adaptive filters. For more information on the
filtering capabilities of this product, see “Filter Design” and “Filter Analysis”.

Because all blocks in this model have the same sample time, this model is
single rate and Simulink ran it in SingleTasking solver mode. If the blocks
in your model have different sample times, your model is multirate and
Simulink might run it in MultiTasking solver mode. For more information on
solver modes, see “Recommended Settings for Discrete-Time Simulations” in
the DSP System Toolbox User’s Guide.

To learn how to generate code from your model using the Simulink Coder
product, see the “Generate Code from Simulink” section.

3-27

3 Design Filters in Simulink®

3-28

4

System Objects

• “What Is a System Toolbox?” on page 4-2

• “What Are System Objects?” on page 4-3

• “When to Use System Objects Instead of MATLAB Functions” on page 4-5

• “System Design and Simulation in MATLAB” on page 4-8

• “System Objects in MATLAB Code Generation” on page 4-9

• “System Objects in Simulink” on page 4-16

• “System Object Methods” on page 4-17

• “System Design Using System Objects” on page 4-20

4 System Objects

What Is a System Toolbox?
System Toolbox products provide algorithms and tools for designing,
simulating, and deploying dynamic systems in MATLAB and Simulink. These
toolboxes contain MATLAB functions, System objects, and Simulink blocks
that deliver the same design and verification capabilities across MATLAB
and Simulink, enabling more effective collaboration among system designers.
Available System Toolbox products include:

• DSP System Toolbox

• Communications System Toolbox

• Computer Vision System Toolbox

• Phased Array System Toolbox

System Toolboxes support floating-point and fixed-point streaming data
simulation for both sample- and frame-based data. They provide a
programming environment for defining and executing code for various aspects
of a system, such as initialization and reset. System Toolboxes also support
code generation for a range of system development tasks and workflows,
such as:

• Rapid development of reusable IP and test benches

• Sharing of component libraries and systems models across teams

• Large system simulation

• C-code generation for embedded processors

• Finite wordlength effects modeling and optimization

• Ability to prototype and test on real-time hardware

4-2

What Are System Objects?

What Are System Objects?
A System object is a specialized kind of MATLAB object. System Toolboxes
include System objects and most System Toolboxes also have MATLAB
functions and Simulink blocks. System objects are designed specifically for
implementing and simulating dynamic systems with inputs that change over
time. Many signal processing, communications, and controls systems are
dynamic. In a dynamic system, the values of the output signals depend on
both the instantaneous values of the input signals and on the past behavior of
the system. System objects use internal states to store that past behavior,
which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such
as video and audio processing systems.

For example, you could use System objects in a system that reads data from
a file, filters that data and then writes the filtered output to another file.
Typically, a specified amount of data is passed to the filter in each loop
iteration. The file reader object uses a state to keep track of where in the file
to begin the next data read. Likewise, the file writer object keeps tracks of
where it last wrote data to the output file so that data is not overwritten. The
filter object maintains its own internal states to assure that the filtering is
performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer™ license)

• C code generation (requires a MATLAB Coder or Simulink Coder license)

• HDL code generation (requires an HDL Coder™ license)

• Executable files or shared libraries generation (requires a MATLAB
Compiler™ license)

4-3

4 System Objects

Note Check your product documentation to confirm fixed-point, code
generation, and MATLAB Compiler support for the specific System objects
you want to use.

4-4

When to Use System Objects Instead of MATLAB Functions

When to Use System Objects Instead of MATLAB Functions

In this section...

“System Objects vs. MATLAB Functions” on page 4-5

“Process Audio Data Using Only MATLAB Functions Code” on page 4-5

“Process Audio Data Using System Objects” on page 4-6

System Objects vs. MATLAB Functions
Many System objects have MATLAB function counterparts. For simple,
one-time computations use MATLAB functions. However, if you need to
design and simulate a system with many components, use System objects.
Using System objects is also appropriate if your computations require
managing internal states, have inputs that change over time or process large
streams of data.

Building a dynamic system with different execution phases and internal
states using only MATLAB functions would require complex programming.
You would need code to initialize the system, validate data, manage internal
states, and reset and terminate the system. System objects perform many of
these managerial operations automatically during execution. By combining
System objects in a program with other MATLAB functions, your can
streamline your code and improve efficiency.

Process Audio Data Using Only MATLAB Functions
Code
This example shows code using only MATLAB functions to read audio data
from a file, filter it, and then play the filtered audio data. The audio data is
read in frames. This code produces the same result as the System objects code
in the next example, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Obtain the total number of samples and the sampling rate from the source file.

4-5

4 System Objects

audioInfo = audioinfo(fname);
maxSamples = audioInfo.TotalSamples;
fs = audioInfo.SampleRate;

Define the filter to use.

b = fir1(160,.15);

Initialize the filter states.

z = zeros(1,numel(b)-1);

Define the amount of audio data to process at one time, and initialize the
while loop index.

frameSize = 1024;
nIdx = 1;

Define the while loop to process the audio data.

while nIdx <= maxSamples(1)-frameSize+1
audio = audioread(fname,[nIdx nIdx+frameSize-1]);
[y,z] = filter(b,1,audio,z);
sound(y,fs);
nIdx = nIdx+frameSize;

end

The loop uses explicit indexing and state management, which can be a tedious
and error-prone approach. You must have detailed knowledge of the states,
such as, sizes and data types. Another issue with this MATLAB-only code is
that the sound function is not designed to run in real time. The resulting
audio is very choppy and barely audible.

Process Audio Data Using System Objects
This example shows code using System objects from the DSP System Toolbox
software to read audio data from a file, filter it, and then play the filtered
audio data. This code produces the same result as the MATLAB code shown
previously, allowing you to compare approaches.

Locate source audio file.

4-6

When to Use System Objects Instead of MATLAB Functions

fname = 'speech_dft_8kHz.wav';

Define the System object to read the file.

audioIn = dsp.AudioFileReader(fname,'OutputDataType','single');

Define the System object to filter the data.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Define the System object to play the filtered audio data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

Define the while loop to process the audio data.

while ~isDone(audioIn)
audio = step(audioIn); % Read audio source file
y = step(filtLP,audio); % Filter the data
step(audioOut,y); % Play the filtered data

end

This System objects code avoids the issues present in the MATLAB-only code.
Without requiring explicit indexing, the file reader object manages the data
frame sizes while the filter manages the states. The audio player object plays
each audio frame as it is processed.

4-7

4 System Objects

System Design and Simulation in MATLAB
System objects allow you to design and simulate your system in MATLAB.
You use System objects as shown in this diagram.

1 Create individual components — Create the System objects to use in
your system. See “Create Components for Your System” on page 4-20 for
information.

2 Configure components — If necessary, change the objects’ property values
to model your particular system. All System object properties have default
values that you may be able to use without changing them. See “Configure
Components for Your System” on page 4-21 for information.

3 Assemble components into system — Write a MATLAB program that
includes those System objects, connecting them using MATLAB variable as
inputs and outputs to simulate your system. See “Assemble Components to
Create Your System” on page 4-22 for information.

4 Run the system — Run your program, which uses the step method to
run your system’s System objects. You can change tunable properties
while your system is running. See “Run Your System” on page 4-24 and
“Reconfigure Your System During Runtime” on page 4-24 for information.

4-8

System Objects in MATLAB® Code Generation

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 4-9

“System Objects in codegen” on page 4-14

“System Objects in the MATLAB Function Block” on page 4-15

“System Objects and MATLAB® Compiler™ Software” on page 4-15

System Objects in Generated Code
You can generate C/C++ code from your system that contains System objects
by using the MATLAB Coder product. Using this product, you can generate
efficient and compact code for deployment in desktop and embedded systems
and accelerate fixed-point algorithms.

Note Most, but not all, System objects support code generation. Refer to the
particular object’s reference page for information.

System Objects Code with Persistent Objects for Code
Generation
This example shows how to use System objects to make MATLAB code suitable
for code generation. The example highlights key factors to consider, such as
passing property values and using extrinsic functions. It also shows that by
using persistent objects, the object states are maintained between calls.

function w = lmssystem(x, d)
% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter
%#codegen

% Declare System objects as persistent.
persistent hlms;

% Initialize persistent System objects only once
% Do this with 'if isempty(persistent variable).'

4-9

4 System Objects

% This condition will be false after the first time.

if isempty(hlms)
% Create LMS adaptive filter used for system
% identification. Pass property value arguments
% as constructor arguments. Property values must
% be constants during compile time.

hlms = dsp.LMSFilter(11,'StepSize',0.01);
end

[~,~,w] = step(hlms,x,d); % Filter weights
end

This example shows how to compile the lmssystem function and produce a
MEX file with the same name in the current directory.

% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter

coefs = fir1(10,.25);
hfilt = dsp.FIRFilter('Numerator', coefs);

x = randn(1000,1); % Input signal
hSrc = dsp.SignalSource(x,100); % Use x as input-signal with

% 100 samples per frame

% Generate code for lmssystem
codegen lmssystem -args {ones(100,1),ones(100,1)}

while ~isDone(hSrc)
in = step(hSrc);
d = step(hfilt,in) + 0.01*randn(100,1); % Desired signal
w = lmssystem_mex(in,d); % Call generated mex file
stem([coefs.',w]);

end

For another detailed code generation example, see “Generate Code for
MATLAB Handle Classes and System Objects” in the MATLAB Coder product
documentation.

4-10

System Objects in MATLAB® Code Generation

System Objects Code Without Persistent Objects for Code
Generation
The following example, using System objects, does not use the persistent
keyword because calling a persistent object with different data types causes a
data type mismatch error. This example filters the input and then performs a
discrete cosine transform on the filtered output.

function [out] = FilterAndDCTLib(in)
hFIR = dsp.FIRFilter('Numerator',fir1(10,0.5));
DCT = dsp.DCT;

% Run the objects to get the filtered spectrum
firOut = hFIR.step(in);
out = hDCT.step(firOut);

function [out1, out2] = CompareRealInt(in1)
% Call the library function, FilterAndDCTLib, which can
% generate code for multiple calls each with a different data type.

% Convert input data from double to int16
in2 = int16(in1);

% Call the library function for both data types, double and int16
out1 = FilterAndDCTLib(in1);
out2 = FilterAndDCTLib(in2);

function RunDCTExample
% Execute everything needed at the command line to run the example

warnState = warning('off','SimulinkFixedPoint:util:fxpParameterUnderflow

% Create vector, length 256, of data containing noise and sinusoids
dataLength = 256;
sampleData = rand(dataLength,1) + 3*sin(2*pi*[1:dataLength]*.085)' ...

+ 2*cos(2*pi*[1:dataLength]*.02)';

% Generate code and run generated file
codegen CompareRealInt -args {sampleData}

4-11

4 System Objects

[out1,out2] = CompareRealInt_mex(sampleData);

% Compare the the floating point results, in blue
% with the int16 results, in red
plot(out1,'b');
hold on;
plot(out2,'r');
hold off

warning(warnState.state,warnState.identifier);
end

Usage Rules and Limitations for System Objects in Generated
MATLAB Code
The following usage rules and limitations apply to using System objects in
code generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Create child System objects only in the parent constructor or in the setup
method. Calls to the child constructor cannot be in a function called from
the parent constructor or the setup method.

• Set arguments to System object constructors as compile-time constants.

Inputs and Outputs

• The data type of the inputs should not change.

• If you want the size of inputs to change, verify that variable-size is enabled.
Code generation support for variable-size data also requires that the Enable
variable sizing option is enabled, which is the default in MATLAB.

4-12

System Objects in MATLAB® Code Generation

Note Variable-size properties in MATLAB Function block in
Simulink are not supported. System objects predefined in the
software do not support variable-size if their data exceeds the
DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function
block.

• Do not use the Save and Restore Simulation State as SimState option for
any System object in a MATLAB Function block.

• Do not pass a System object as an example input argument to a function
being compiled with codegen.

• Do not pass a System object to functions declared as extrinsic (functions
called in interpreted mode) using the coder.extrinsic function. System
objects returned from extrinsic functions and scope System objects that
automatically become extrinsic can be used as inputs to another extrinsic
function, but do not generate code.

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there
can be at most one assignment to that property (including the assignment
in the constructor).

• For most System objects, the only time you can set their nontunable
properties during code generation is when you construct the objects.

- For System objects that are predefined in the software, you can set their
tunable properties at construction time or using dot notation after the
object is locked.

- For System objects that you define, you can change their tunable
properties at construction time or using dot notation during code
generation.

• Default values of tunable properties determine the dimension, data type,
and complexity of those properties. Objects cannot be used as default
values for properties.

4-13

4 System Objects

Cell Arrays and Global Variables

• Do not use cell arrays.

• Global variables are not supported. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object.
For example:

f = coder.MEXConfig;
f.GlobalSyncMethod='NoSync'

Then, include '-config f' in your codegen command.

Methods Supported for Code Generation

• Code generation support is available only for these System object methods:

- get

- getNumInputs

- getNumOutputs

- isDone (for sources only)

- release

- reset

- set (for tunable properties)

- step

System Objects in codegen
You can include System objects in MATLAB code in the same way you
include any other elements. You can then compile a MEX file from your
MATLAB code by using the codegen command, which is available if you have
a MATLAB Coder license. This compilation process, which involves a number
of optimizations, is useful for accelerating simulations. See “Getting Started
with MATLAB Coder” and “MATLAB Classes” for more information.

4-14

System Objects in MATLAB® Code Generation

Note Most, but not all, System objects support code generation. Refer to the
particular object’s reference page for information.

System Objects in the MATLAB Function Block
Using the MATLAB Function block, you can include any System object and
any MATLAB language function in a Simulink model. This model can then
generate embeddable code. System objects provide higher-level algorithms for
code generation than do most associated blocks. For more information, see
“What Is a MATLAB Function Block?” in the Simulink documentation.

System Objects and MATLAB Compiler Software
MATLAB Compiler software supports System objects for use inside MATLAB
functions. The compiler product does not support System objects for use in
MATLAB scripts.

4-15

4 System Objects

System Objects in Simulink
You can also include System object code in Simulink models using the
MATLAB Function block. This ability to include MATLAB code in Simulink.
However, portions of the system are easier to implement in the MATLAB
environment. Many System objects have Simulink block counterparts with
equivalent functionality. Before writing MATLAB code to include in a
Simulink model, check for existing blocks that perform the desired operation.

4-16

System Object Methods

System Object Methods

In this section...

“What Are System Object Methods?” on page 4-17

“The Step Method” on page 4-17

“Common Methods” on page 4-18

What Are System Object Methods?
After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using
methods is <method>(<handle>), such as step(H), plus possible extra input
arguments.

System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable objects, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.

4-17

4 System Objects

For more information about the step method and other available methods, see
the descriptions in “Common Methods” on page 4-18.

Common Methods
All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

Method Description

step Processes data using the algorithm defined by the
object. As part of this processing, it initializes needed
resources, returns outputs, and updates the object
states. After you call the step method, you cannot
change any input specifications (i.e., dimensions, data
type, complexity). During execution, you can change
only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)

release Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks
the object. For System objects, use the release
method instead of a destructor.

reset Resets the internal states of the object to the initial
values for that object

getNumInputs Returns the number of inputs (excluding the object
itself) expected by the step method. This number
varies for an object depending on whether any
properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending
on whether any properties enable additional outputs.

4-18

System Object Methods

Method Description

getDiscreteState Returns the discrete states of the object in a structure.
If the object is unlocked (when the object is first
created and before you have run the step method
on it or after you have released the object), the
states are empty. If the object has no discrete states,
getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same
property values

isLocked Returns a logical value indicating whether the object
is locked.

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached
the end of the data file. If a particular object does
not have end-of-data capability, this method value
returns false.

info Returns a structure containing characteristic
information about the object. The fields of this
structure vary depending on the object. If a particular
object does not have characteristic information, the
structure is empty.

4-19

4 System Objects

System Design Using System Objects

In this section...

“Create Components for Your System” on page 4-20

“Configure Components for Your System” on page 4-21

“Assemble Components to Create Your System” on page 4-22

“Run Your System” on page 4-24

“Reconfigure Your System During Runtime” on page 4-24

Create Components for Your System
A System object is a component you can use to create your system in
MATLAB. System objects support fixed- or variable-size data. Variable-size
data is data whose size can change at run time. By contrast, fixed-size data
is data whose size is known and locked at initialization time, and therefore,
cannot change at run time.

Many System objects are predefined in the software. You can also define your
own System objects (see “Define New System Objects”).

This example shows the first step in designing a system that processes a long
stream of audio data. The data is read from a file, filtered, and then played.
The particular predefined components you need are:

• dsp.AudioFileReader — Read the file of audio data

• dsp.FIRFilter — Filter the audio data

• dsp.AudioPlayer — Play the filtered audio data

First, you create the component objects, using default property settings:

audioIn = dsp.AudioFileReader;
filtLP = dsp.FIRFilter;
audioOut = dsp.AudioPlayer;

Next, you configure each System object for your system. See “Configure
Components for Your System” on page 4-21.

4-20

System Design Using System Objects

Note Alternately, if desired, you can “Create and Configure Components at
the Same Time” on page 4-22.

Configure Components for Your System

When to Configure Components
If you did not set an object’s properties when you created it and do not
want to use default values, you must explicitly set those properties. Some
properties allow you to change their values while your system is running. See
“Reconfigure Your System During Runtime” on page 4-24 for information.

Most properties are independent of each other. However, some System object
properties enable or disable another property or limit the values of another
property. To avoid errors or warnings, you should set the controlling property
before setting the dependent property.

Display Component Property Values
To display the current property values for an object, type that object’s handle
name at the command line (such as audioIn). To display the value of a specific
property, type objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values
This example shows how to configure the components for your system by
setting the component objects’ properties. Use this procedure if you have
created your components as described in “Create Components for Your
System” on page 4-20.

Note If you have not yet created your components, use the procedure in
“Create and Configure Components at the Same Time” on page 4-22.

For the file reader object, specify the file to read and set the output data type.

audioIn.Filename = 'speech_dft_8kHz.wav';
audioIn.OutputDataType = 'single';

4-21

4 System Objects

For the filter object, specify the filter numerator coefficients using the fir1
function, which specifies the lowpass filter order and the cutoff frequency.

filtLP.Numerator = fir1(160,.15);

For the audio player object, specify the sample rate. In this case, use the
same sample rate as the input data.

audioOut.SampleRate = audioIn.SampleRate;

Create and Configure Components at the Same Time
This example shows how to create your System object components and
configure the desired properties at the same time. To avoid errors or warnings
for dependent properties, you should set the controlling property before
setting the dependent property. Use this procedure if you have not already
created your components.

Create the file reader object, specify the file to read, and set the output data
type.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...
'OutputDataType','single')

Create the filter object and specify the filter numerator using the fir1
function. Specify the lowpass filter order and the cutoff frequency of the fir1
function.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Create the audio player object and specify the sample rate. In this case, use
the same sample rate as the input data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

After you create the components, you can assemble them in your system. See
“Assemble Components to Create Your System” on page 4-22.

Assemble Components to Create Your System

• “Connect Inputs and Outputs” on page 4-23

4-22

System Design Using System Objects

• “Code for the Whole System” on page 4-23

Connect Inputs and Outputs
After you have determined the components you need and have created and
configured your System objects, assemble your system. You use the System
objects like other MATLAB variables and include them in MATLAB code. You
can pass MATLAB variables into and out of System objects.

The main difference between using System objects and using functions is
the step method. The step method is the processing command for each
System object and is customized for that specific System object. This method
initializes your objects and controls data flow and state management of your
system. You typically use step within a loop.

You use the output from an object’s step method as the input to another
object’s step method. For some System objects, you can use properties of
those objects to change the number of inputs or outputs. To verify that
the appropriate number of input and outputs are being used, you can use
getNumInputs and getNumOutputs on any System object. For information on
all available System object methods, see “System Object Methods” on page
4-17.

Code for the Whole System
This example shows the full code for reading, filtering, and playing a file of
audio data.

You can type this code on the command line or put it into a program file.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...
'OutputDataType','single');

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));
audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

while ~isDone(audioIn)
audio = step(audioIn); % Read audio source file
y = step(filtLP,audio); % Filter the data
step(audioOut,y); % Play the filtered data

end

4-23

4 System Objects

The while loop uses the isDone method to read through the entire file. The
step method is used on each object inside the loop.

Now, you are ready to run your system. See “Run Your System” on page 4-24.

Run Your System

• “How to Run Your System” on page 4-24

• “What You Cannot Change While Your System Is Running” on page 4-24

How to Run Your System
Run your code either by typing directly at the command line or running a file
containing your program. When you run the code for your system, the step
method instructs each object to process data through that object.

What You Cannot Change While Your System Is Running
The first call to the step method initializes and then locks your object. When
a System object has started processing data, it is locked to prevent changes
that would disrupt its processing. Use the isLocked method to verify whether
an object is locked. When the object is locked, you cannot change:

• Number of inputs or outputs

• Data type of inputs or outputs

• Data type of any tunable property

• Dimensions of inputs or tunable properties, except for System objects that
support variable-size data

• Value of any nontunable property

To make changes to your system while it is running, see “Reconfigure Your
System During Runtime” on page 4-24.

Reconfigure Your System During Runtime

• “When Can You Change Component Properties?” on page 4-25

4-24

System Design Using System Objects

• “Change a Tunable Property in Your System” on page 4-25

• “Change Input Complexity or Dimensions” on page 4-25

When Can You Change Component Properties?
When a System object has started processing data, it is locked to prevent
changes that would disrupt its processing. You can use isLocked on any
System object to verify whether it is locked or not. When processing is
complete, you can use the release method to unlock a System object.

Some object properties are tunable, which enables you to change them even
if the object is locked. Unless otherwise specified, System objects properties
are nontunable. Refer to the object’s reference page to determine whether an
individual property is tunable. Typically, tunable properties are not critical to
how the System object processes data.

Change a Tunable Property in Your System

You can change the filter type to a high-pass filter as your code is running
by replacing the while loop with the following while loop. The change takes
effect the next time the step method is called (such as at the next iteration of
the while loop).

reset(audioIn); % Reset audio file
filtLP.Numerator = fir1(160,0.15,'high');
while ~isDone(audioIn)

audio = step(audioIn); % Read audio source file
y = step(filtLP,audio); % Filter the data
step(audioOut,y); % Play the filtered data

end

Change Input Complexity or Dimensions
During simulation, some System objects do not allow complex data if the
object was initialized with real data. You cannot change any input complexity
during code generation.

You can change the value of a tunable property without a warning or error
being produced. For all other changes at run time, an error occurs.

4-25

4 System Objects

4-26

Index

IndexA
adaptive filters

adding to model 3-16
designing 3-11
viewing coefficients 3-21

C
clone method 4-19
coefficients

of adaptive filter 3-21
creation of

adaptive filters 3-11
digital filters 3-2

D
design a filter 2-4

filterbuilder 2-10
design of

adaptive filters 3-11
digital filters 3-2

digital filters
adding to model 3-7
designing 3-2

displaying
coefficients of adaptive filter 3-21

documentation
installing 1-3

dspstartupfile
editing 1-6

E
environment (system)

setting up 1-3

F
files

startup 1-5

Filter Design and Analysis Tool (FDATool) 3-2
filterbuilder 2-10
filters

adding to model 3-7
lowpass 3-2

fixed-step solvers
setting 1-6

functions, utility
startup 1-5

G
getDiscreteState method 4-19
getNumInputs method 4-18
getNumOutputs method 4-18
getting started 2-2
getting started example 2-2

I
info method 4-19
installation

documentation 1-3
DSP System Toolbox 1-3

isDone method 4-19
isLocked method 4-19

L
lowpass filters 3-2

M
memory

conserving 1-6

O
Out block

suppressing output 1-6

Index-1

Index

P
parameters

Solver 1-6
Stop time 1-6

performance
dspstartup file 1-6

R
release method 4-18
reset method 4-18

S
setting up

system 1-3
simulations

accelerating 1-6
stopping 1-6

Solver parameter 1-6
speed

improving 1-6
startup file 1-5
step method 4-18
Stop time parameter 1-6
stopping a simulation 1-6
streaming data

using System objects 4-17
suppressing

tout vector 1-6
system

setup 1-3
System object

clone method 4-19
getDiscreteState method 4-19
getNumInputs method 4-18

getNumOutputs method 4-18
info method 4-19
isDone method 4-19
isLocked 4-19
methods 4-17
release method 4-18
reset method 4-18
step method 4-18
using with MATLAB code generation 4-9

T
time-step vector

saving to workspace 1-6
toolbox

getting started 2-2
tout vector

suppressing 1-6

V
variable-step solver

setting 1-6
viewing

coefficients of adaptive filter 3-21

W
workspace

suppressing output to 1-6

Y
yout

suppressing 1-6

Index-2

	toc
	Introduction
	Product Description
	Key Features

	Configure Simulink Environment for Signal Processing Models
	Installation
	Installing the DSP System Toolbox Software
	Installing Online Documentation

	Required Products
	Related Products
	Configure the Simulink Environment for Signal Processing Models
	Using dspstartup.m
	Settings in dspstartup.m

	Design a Filter with fdesign and filterbuilder
	Filter Design Process Overview
	Design a Filter Using fdesign
	Design a Filter in Two Steps
	Design a Filter Using filterbuilder
	Design a Simple Filter in Filterbuilder

	Design Filters in Simulink
	Design and Implement a Filter
	Design a Digital Filter in Simulink
	Add a Digital Filter to Your Model

	Adaptive Filters
	Design an Adaptive Filter in Simulink
	Add an Adaptive Filter to Your Model
	View the Coefficients of Your Adaptive Filter

	System Objects
	What Is a System Toolbox?
	What Are System Objects?
	When to Use System Objects Instead of MATLAB Functions
	System Objects vs. MATLAB Functions
	Process Audio Data Using Only MATLAB Functions Code
	Process Audio Data Using System Objects

	System Design and Simulation in MATLAB
	System Objects in MATLAB Code Generation
	System Objects in Generated Code
	System Objects Code with Persistent Objects for Code Generation
	System Objects Code Without Persistent Objects for Code Generati
	Usage Rules and Limitations for System Objects in Generated MATL

	System Objects in codegen
	System Objects in the MATLAB Function Block
	System Objects and MATLAB Compiler Software

	System Objects in Simulink
	System Object Methods
	What Are System Object Methods?
	The Step Method
	Common Methods

	System Design Using System Objects
	Create Components for Your System
	Configure Components for Your System
	When to Configure Components
	Display Component Property Values
	Configure Component Property Values
	Create and Configure Components at the Same Time

	Assemble Components to Create Your System
	Connect Inputs and Outputs
	Code for the Whole System

	Run Your System
	How to Run Your System
	What You Cannot Change While Your System Is Running

	Reconfigure Your System During Runtime
	When Can You Change Component Properties?
	Change a Tunable Property in Your System
	Change Input Complexity or Dimensions

	Index

